72 research outputs found

    Virtual Impedance Impact on Inverter Control Topologies

    Get PDF
    The different nature of the energy resources requires high reliable power inverters to supply regulated power to the end customer and to ease its integration within the microgrid. In this paper, modeling, design and control of inverters are presented for two different topologies. The study addresses the feasibility of the single loop and double loop control of inverters. The bode plot technique is used to analyze the system behavior when the inductor and the capacitor currents are used as feedback signals. The different output impedance natures affect the power sharing between inverters and stability. Therefore, a proposed virtual impedance is implemented to enhance the control performance. Simulation results are presented to show the validity of the control strategy

    A modified internal model control for unstable–time delayed system

    Get PDF
    A new approach of control design of internal model controller is proposed in this paper. The proposed design method focuses on modifying the old general structure of IMC and develops a new model structure while saving the same general concept of using the invertible version of the system in the controller design. The new approach combines the IMC structure and the traditional structure of a control problem and this demonstrates an excellent performance and behavior against different disturbance inputs and model uncertainty presented in model parameter mismatch. Beside that a smith predictor is added to promote the design to compensate the delayed time systems. Also a proposed stabilizer has mentioned to deal with unstable systems

    Control of Transient Power during Unintentional Islanding of Microgrids

    Get PDF
    In inverter-based microgrids, the paralleled inverters need to work in grid-connected mode and stand-alone mode and to transfer seamlessly between the two modes. In grid-connected mode, the inverters control the amount of power injected into the grid. In stand-alone mode, however, the inverters control the island voltage while the output power is dictated by the load. This can be achieved using the droop control. Inverters can have different power set points during grid-connected mode, but in stand-alone mode, they all need their power set points to be adjusted according to their power ratings. However, during sudden unintentional islanding (due to loss of mains), transient power can flow from inverters with high power set points to inverters with low power set points, which can raise the dc-link voltage of the inverters causing them to shut down. This paper investigates the transient circulating power between paralleled inverters during unintentional islanding and proposes a controller to limit it. The controller monitors the dc-link voltage and adjusts the power set point in proportion to the rise in the voltage. A small-signal model of an islanded microgrid is developed and used to design the controller. Simulation and experimental results are presented to validate the design

    Control Strategy for Uninterrupted Microgrid Mode Transfer during Unintentional Islanding Scenarios

    Get PDF
    This paper presents a microgrid control strategy to unify the control topology for energy storage systems (ESS) and renewable energy sources (RES) inverters in an AC microgrid and to protect the microgrid reliability from unintentional islanding instability using control loops which use the DC link voltage as a feedback. This bounds the DC link voltage and provides reliable operation in the microgrid. Simulation validates the proposed control strategy, and experiment results extol the concept

    Supervisory control for power management of an islanded AC microgrid using frequency signalling-based fuzzy logic controller

    Get PDF
    In islanded AC microgrids consisting of renewable energy sources (RES), battery-based energy storage system (BESS), and loads, the BESS balances the difference between the RES power and loads by delivering/absorbing that difference. However, the state of charge (SOC) and charging/discharging power of the battery should be kept within their design limits regardless of variations in the load demand or the intermittent power of the RES. In this paper, a supervisory controller based on fuzzy logic is proposed to assure that the battery power and energy do not exceed their design limits and maintaining a stable power flow. The microgrid considered in this paper consists of a PV, battery, load and auxiliary supplementary unit. The fuzzy logic controller alters the AC bus frequency, which is used by the local controllers of the parallel units to curtail the power generated by the PV or to supplement the power from the auxiliary unit. The proposed FLC performance is verified by simulation and experimental results. IEE

    Impedance interaction between islanded parallel voltage source inverters and the distribution network

    Get PDF
    In an islanded microgrid consisting of parallel-connected inverters, the interaction between an inverter’s output impedance (dominated by the inverter’s filter and voltage controller) and the impedance of the distribution network (dominated by the other paralleled inverters’ output impedances and the interconnecting power cables) might lead to instability. This paper studies this phenomenon using root locus analysis. A controller based on the second derivative of the output capacitor voltage is proposed to enhance the stability of the system. Matlab simulation results are presented to confirm the validity of the theoretical analysis and the robustness of the proposed controlle

    DC microgrid power coordination based on fuzzy logic control

    Get PDF
    The power coordination in DC microgrids has a vital role in enhancing the performance and management of multi generation units. Renewable Energy Sources (RES) are limited to their available power with intermittent nature. Battery-based energy storage sources have limitations in the charging and discharging capabilities to avoid depleting the battery and preserve the State of Charge (SOC) within its satisfactory limits. The battery balances the power difference between RES and loads. However, in severe cases where the SOC is very low, load shedding is crucial. In this paper, a Fuzzy Logic Controller (FLC) has been proposed to coordinate the power flow of PV unit and battery to satisfy the load by full use of the available PV power. It controls the PV’s output power and keeps the SOC and charging / discharging power of the battery within their required margins regardless of the variations in load. Furthermore, load shedding of low priority load has been implemented when the battery couldn’t balance the microgrid power flow. Simplicity in managing multi input-multi output system by FLC is the main merit. Matlab/Simulink results are presented to validate the performance of the proposed controller

    Road map of power electronics knowledge and skills for enhancing engineering graduates' employability

    Get PDF
    Undoubtedly, the power electronics industry covers a breadth of application areas and markets that many other industries can match. It is essential for the efficient conversion and conditioning of energy in a wide range of applications, for example, but not limited to smart grids and electric vehicles. Accordingly, the power electronics industry strives for more knowledgeable and skilled graduates. Hence, The electrical engineering curriculum should be supported by market-oriented knowledge and industry skills based on the industry employers' vision and recruiting plans. This paper explores the needed power electronics knowledge and skills from the perspective of industry employers. The study is based on a survey targeting 38 academics and 18 industry representatives regarding the gaps in the Power Electronics and Machine Drives (PEMD) curriculum. The survey leads to the presented road map of power electronics knowledge and skills. This road map addresses the curriculum framework and the required employability skills in the power electronics industry

    Improved Control Strategies for Droop-Controlled Inverter-Based Microgrid

    Get PDF
    The main focus of this PhD thesis is fundamental investigations into control techniques of inverter-based microgrids. It aims to develop new and improved control techniques to enhance performance and reliability. It focuses on the modelling, stability analysis and control design of parallel inverters in a microgrid. In inverter-based microgrids, the paralleled inverters need to work in both grid-connected mode and stand-alone mode and should be able to transfer seamlessly between the two modes. In grid-connected mode, the inverters control the amount of power injected into the grid. In stand-alone mode, however, the inverters control the island voltage while the output power is dictated by the load. This can be achieved using droop control. Inverters can have different power set-points during grid-connected mode but in stand-alone mode they all need their power set-points to be adjusted according to their power ratings. However, during sudden unintentional islanding (due to loss of mains), transient power can flow from inverters with high power set-points to inverters with low power set-points, which can raise the DC link voltage of the inverters causing them to shut down. This thesis investigates the transient circulating power between paralleled inverters during unintentional islanding and proposes a controller to limit it. The controller monitors the DC link voltage and adjusts the power set-point in proportion to the rise in the voltage. A small signal model of an island microgrid has been developed and used to design the controller. The model and the controller design have been validated by simulation and practical experimentation. The results confirmed the performance of the proposed controller for limiting the DC link voltage and supporting a seamless mode transfer. The limitation of the droop controller, that is utilized to achieve load sharing between parallel-operated inverters in island mode, has also been addressed. Unequal output impedances among the distribution generation (DG) units lead to the droop control being inaccurate, particularly in terms of reactive power sharing. Many methods reported in the literature adopt low speed communications to achieve efficient sharing. However, the loss of this communication could lead to inaccuracy or even instability. An improved reactive power-sharing controller is proposed in this thesis. It uses the voltage at the point of common coupling (PCC) to estimate the inductance value of the output impedance including the impedance of the interconnecting power cables and to readjust the voltage droop controller gain accordingly. In an island microgrid consisting of parallel-connected inverters, the interaction between an inverter’s output impedance (dominated by the inverter’s filter and voltage controller) and the impedance of the distribution network (dominated by the other paralleled inverters’ output impedances and the interconnecting power cables) might lead to instability. This thesis studies this phenomenon using root locus analysis. A controller based on the second derivative of the output capacitor voltage is proposed to enhance the stability of the system. Matlab simulation results are presented to confirm the validity of the theoretical analysis and the robustness of the proposed controller. A laboratory-scale microgrid consisting of two inverters and local load has been built for the experimental phase of the research work. A controller for a voltage source inverter is designed and implemented. A dSPACE unit has been used to realize the controller and monitor the system in real time with the aid of a host computer. Experimental results of the two voltage source inverters outputs are presented

    Design and modelling of permanent magnet fault current limiter For electrical power applications

    Get PDF
    As the electrical power grids are extending in capacity with connection of distributed generations, the fault current level is increasing and approaching the capacity limits of the circuit breakers. In this paper, a saturated inductor fault current limiter (FCL) based on permanent magnet biasing has been developed to overcome the inherent disadvantages associated with many previous technologies such as superconducting based techniques. A 3D Finite Element Modeling (FEM) is used to develop and validate the proposed design and compared it with air-cored inductor. A lab-scale prototype was built to verify the design. Furthermore, a scaled up model which could be introduced to 11 kV network is introduced and its electromagnetic performance is evaluate
    • …
    corecore